Effect of depth information on multiple-object tracking in three dimensions: A probabilistic perspective
نویسندگان
چکیده
Many daily situations require us to track multiple objects and people. This ability has traditionally been investigated in observers tracking objects in a plane. This simplification of reality does not address how observers track objects when targets move in three dimensions. Here, we study how observers track multiple objects in 2D and 3D while manipulating the average speed of the objects and the average distance between them. We show that performance declines as speed increases and distance decreases and that overall tracking accuracy is always higher in 3D than in 2D. The effects of distance and dimensionality interact to produce a more than additive improvement in performance during tracking in 3D compared to 2D. We propose an ideal observer model that uses the object dynamics and noisy observations to track the objects. This model provides a good fit to the data and explains the key findings of our experiment as originating from improved inference of object identity by adding the depth dimension.
منابع مشابه
Online multiple people tracking-by-detection in crowded scenes
Multiple people detection and tracking is a challenging task in real-world crowded scenes. In this paper, we have presented an online multiple people tracking-by-detection approach with a single camera. We have detected objects with deformable part models and a visual background extractor. In the tracking phase we have used a combination of support vector machine (SVM) person-specific classifie...
متن کاملNeuroTracker Three-Dimensional Multiple Object Tracking (3D-MOT): A Tool to Improve Concentration and Game Performance among Basketball Athletes
Background. Basketball is a dynamic sport where athletes are expected to observe the fast movements of team players and opponents in a performance. This condition requires a collective focus on the stipulated tasks, to achieve peak performance. Besides, training is frequently performed to improve concentration and athlete performance. This instigates the need for technology-based methods, inclu...
متن کاملMultiple Target Tracking With a 2-D Radar Using the JPDAF Algorithm and Combined Motion Model
Multiple target tracking (MTT) is taken into account as one of the most important topics in tracking targets with radars. In this paper, the MTT problem is used for estimating the position of multiple targets when a 2-D radar is employed to gather measurements. To do so, the Joint Probabilistic Data Association Filter (JPDAF) approach is applied to tracking the position of multiple targets. To ...
متن کاملTracking Known Three-Dimensional Objects
A method of visually tracking a known three-dimensional object is described. Predicted object position and orientation extrapolated from previous tracking data are used to find known features in one or more pictures. The measured image positions of the features are used to adjust the estimates of object position, orientation, velocity, and angular velocity in three dimensions, Filtering over ti...
متن کاملConvolutional Gating Network for Object Tracking
Object tracking through multiple cameras is a popular research topic in security and surveillance systems especially when human objects are the target. However, occlusion is one of the challenging problems for the tracking process. This paper proposes a multiple-camera-based cooperative tracking method to overcome the occlusion problem. The paper presents a new model for combining convolutiona...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2017